Conceptual decoding from word lattices: application to the spoken dialogue corpus MEDIA
نویسندگان
چکیده
Within the framework of the French evaluation program MEDIA on spoken dialogue systems, this paper presents the methods proposed at the LIA for the robust extraction of basic conceptual constituents (or concepts) from an audio message. The conceptual decoding model proposed follows a stochastic paradigm and is directly integrated into the Automatic Speech Recognition (ASR) process. This approach allows us to keep the probabilistic search space on sequences of words produced by the ASR module and to project it to a probabilistic search space of sequences of concepts. This paper presents the first ASR results on the French spoken dialogue corpus MEDIA, available through ELDA. The experiments made on this corpus show that the performance reached by our approach is better than the traditional sequential approach that looks first for the best sequence of words before looking for the best sequence of concepts.
منابع مشابه
Conceptual decoding from word lattices: a corpus MED
Within the framework of the French evaluation program MEDIA on spoken dialogue systems, this paper presents the methods proposed at the LIA for the robust extraction of basic conceptual constituents (or concepts) from an audio message. The conceptual decoding model proposed follows a stochastic paradigm and is directly integrated into the Automatic Speech Recognition (ASR) process. This approac...
متن کاملConceptual decoding for spoken dialog systems
A search methodology is proposed for performing conceptual decoding process. Such a process provides the best sequence of word hypotheses according to a set of conceptual interpretations. The resulting models are combined in a network of Stochastic Finite State Transducers. This approach is a framework that tries to bridge the gap between speech recognition and speech understanding processes. I...
متن کاملStochastic Spoken Natural Language Parsing in the Framework of the French MEDIA Evaluation Campaign
A stochastic parsing component has been applied on a French spoken language dialogue corpus, recorded in the framework of theMEDIA evaluation campaign. Realized as an ergodic HMM using Viterbi decoding, the parser outputs the most likely semantic representation given a transcribed utterance as input. The semantic sequences used for training and testing have been derived from the semantic repres...
متن کاملError-corrective discriminative joint decoding of automatic spoken language transcription and understanding
Following recent trends in the development of spoken dialogue systems, this paper proposes to improve the performance of the user’s intent extraction by means of joint decoding of automatic spoken language transcription and understanding. Gains are expected not only from a better connectivity and mutual awareness of both tasks but also through the use of discriminant models and integration of a...
متن کاملStatistical framework for a Spanish spoken dialogue corpus
Dialogue systems are one of the most interesting applications of speech and language technologies. There have recently been some attempts to build dialogue systems in Spanish, and some corpora have been acquired and annotated. Using these corpora, statistical machine learning methods can be applied to try to solve problems in spoken dialogue systems. In this paper, two statistical models based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006